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Blind Estimation of the Arterial Input Function
in Dynamic Contrast-Enhanced MRI Using
Purity Maximization

Yu-Chun Lin,1–3 Tsung-Han Chan,4 Chong-Yung Chi,4 Shu-Hang Ng,1,3,5 Hao-Li Liu,2,5

Kuo-Chen Wei,6 Yau-Yau Wai,1,3 Chun-Chieh Wang,3,7 and Jiun-Jie Wang1,3*

Uncertainty in arterial input function (AIF) estimation is one of
the major errors in the quantification of dynamic contrast-
enhanced MRI. A blind source separation algorithm was pro-
posed to determine the AIF by selecting the voxel time course
with maximum purity, which represents a minimal contamina-
tion from partial volume effects. Simulations were performed
to assess the partial volume effect on the purity of AIF, the
estimation accuracy of the AIF, and the influence of purity on
the derived kinetic parameters. In vivo data were acquired
from six patients with hypopharyngeal cancer and eight rats
with brain tumor. Results showed that in simulation the AIF
with the highest purity is closest to the true AIF. In patients,
the manually selection had reduced purity, which could lead
to underestimations of Ktrans and Ve and an overestimation of
Vp when compared with those obtained by the proposed blind
source separation algorithm. The derived kinetic parameters
in the tumor were more susceptible to the changes in purity
when compared with those in the muscle. The animal experi-
ment demonstrated good reproducibility in blind source sepa-
ration-AIF derived parameters. In conclusion, the blind source
separation method is feasible and reproducible to identify the
voxel with the tracer concentration time course closest to the
true AIF. Magn Reson Med 000:000–000, 2012. VC 2012 Wiley
Periodicals, Inc.

Key words: dynamic contrast-enhanced MRI; arterial input
function; pharmacokinetic modeling

Dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) is a noninvasive imaging tool for estimation

of tissue physiological parameters, such as perfusion,
capillary permeability, and the volume of extravascular–
extracellular space. The interest in these parameters
arises because they were shown to be related to the
response of therapy and the overall survival time [1–3].
The conventional practice of the quantitative analysis
was by fitting the time course of the enhancement pat-
tern immediately after contrast agent injection with a
pharmacokinetic model. Since the pharmacokinetic
model requires the knowledge of the arterial input func-
tion (AIF), which describes the temporal evolution of the
contrast agent concentration in the blood pool [4–6], the
accuracy of the derived kinetic parameters largely
depends on measurement of the AIF.

The estimation of AIF remains a main challenge in DCE-
MRI [7,8]. Manual selection of an artery of interest
requires the successful identification of a large vessel
within the field of view. It is apparently subjective, opera-
tor-dependent and susceptible to partial volume artifacts,
which potentially could lead to significant errors in the
subsequent estimation of the pharmacokinetic parameters
[9]. Alternatively, Parker et al. developed a population-
averaged AIF [10], which is simple and convenient for
clinical use. However, it is possible to introduce artifac-
tual changes in kinetic modeling parameters if systemic
circulatory factors, such as cardiac or renal function, are
altered due to an intervention. The reference region
approach extracted the AIF by comparing the measured
data in healthy tissues with the literature values. It was
limited by the requirement of a well-characterized normal
tissue within the field of view [11–13].

Blind source separation (BSS) is an approach to esti-
mate the underlying source signals from the mixtures
without a priori knowledge about the mixing process,
and therefore can be a method to automatically estimate
AIF. Independent component analysis is a representative
BSS technique that has been previously proposed for the
AIF estimation [14]. However, all the source signals are
assumed to be statistically independent, which could be
invalid in DCE-MRI data because the tracer concentra-
tions of all the pixels in a tissue are relevant due to simi-
lar-behaved blood supplies from the common circulation
system, subject to potential time delays and dispersions.
Fluckiger et al. used the iterative quadratic maximum
likelihood (IQML) algorithm to fit the estimated AIF
using a novel model that comprises two normalized
g-variant curves to minimize the effect of noise [15,16]. It
does not require such statistical assumptions. However,
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the solution of IQML that involves dealing with the non-
convex problem can be prone to initializations.

In this study, we proposed a fully data-driven BSS
algorithm that could estimate AIF from individuals with-
out any presumed AIF model and initialization. The pu-
rity of each voxel time course is a physical reflection of
the contamination by the mixed tissue components in a
single voxel. Increased purity of the voxel of interest
could be related to a decreased partial volume effect.
The AIF can be extracted from the time course of voxels
with the maximum purity in the mixed tissue concentra-
tion. Monte–Carlo simulations were performed to evalu-
ate the influence of AIF purities on the kinetic parame-
ters and the noise sensitivity of the BSS-AIF method.
The kinetic parameters derived from both BSS and man-
ually selected AIFs were compared from six patients
with hypopharyngeal cancer. The reproducibility was
assessed using eight rats with brain tumors by repeated
acquisitions.

THEORY

BSS-Based AIF Estimation

The extended Kety model [17,18] for pharmacokinetic anal-
ysis was adopted. The time-dependent concentration of the
contrast agent in a tissue voxel at time is as follows:

CtðtkÞ ¼ K trans
Xk
n¼1

DtCp tnð Þ � exp �kep tk � tnð Þ� �þ VpCpðtkÞ;

k ¼ 1; . . . ;K ; (1)

where Cp(tk) is the tracer concentration in the blood plasma,
i.e. the AIF, Ct(tk) is the tracer concentration in the tissue,
Ktrans and kep(¼Ktrans/Ve) are the transfer rate constant from
the intravascular system to the extravascular–extracellular
space and that from the extravascular–extracellular space to
the intravascular system, respectively, Vp and Ve are the
capillary plasma volume and the distribution volume of
contrast agent in the extravascular–extracellular space (per
unit volume of tissue), respectively, Dt is the temporal reso-
lution, and K is the total number of DCE-MRI image time
series.

The notation i is introduced to generalize Eq. 1 for dif-
ferent voxels; for instance, Ct(tk, i) is the tracer concen-
tration for time tk and voxel i, and Ktrans(i), kep(i), Ve(i)
and Vp(i) are the associated kinetic parameters for the
voxel i. Note that the AIF Cp(tk) is independent of voxel
location. By collecting all the Ct(t1, i). . . Ct(tK, i) into a
K � 1 vector and by letting cp ¼ [Cp(t1),. . ., Cp(tK)]

T, the
concentration time course from a voxel of interest x(i)
can be given by Eq. 2

xðiÞ ¼
Ct t1; ið Þ

..

.

Ct tK ; ið Þ

2
64

3
75 ¼ A kep ið Þ; cp

� �
s ið Þ; ½2�

where

sðiÞ ¼ K trans ið Þ
Vp ið Þ

� �

is a vector comprising the associated (non-negative)
kinetic parameters, and

AðkepðiÞ; cpÞ

¼

Dt Cpðt1Þ Cpðt1ÞP2
n¼1 Dt CpðtnÞ � exp �kepðiÞðt2 � tnÞ

� �
Cpðt2Þ

..

. ..
.

PK
n¼1 Dt CpðtnÞ � exp �kepðiÞðtK � tnÞ

� �
CpðtK Þ

2
666664

3
777775:

If the AIF (cp) can be accurately estimated in advance,
the kinetic parameters kep(i), K

trans(i), Vp(i) for all i can
then be calculated by solving a non-negativity con-
strained curve fitting problem for Eq. 2 using the least
squares method as in Eq. 3:

min
kepðiÞ�0;sðiÞ�0

jjxðiÞ �AðkepðiÞ; ĉpÞsðiÞjj2; ½3�

where ĉp denotes the estimated AIF; k�k2 is the 2-norm
operator and � component-wise inequality, respectively.

An unsupervised approach is now proposed to iden-
tify the AIF cp from a series of T1-weighted DCE-MRI
data. The purity of the voxel of interest is defined as in
Eq. 4, where k�k1 is the 1-norm operator:

ri ¼
xðiÞk k2
xðiÞk k1

: ½4�

The purity measure ri is a reflection of the contribu-
tion from cp to x(i). The increased purity measure can be
related to an increased contribution from cp in x(i). It
can be related to a reduced extent of partial volume con-
tamination. AIF can be identified from the voxels x(i)
whose purity measure is maximum (Eq. 5, details as in
Appendix A):

ĉp ¼ xði�Þ ½5�

for i* ¼ argi maxri. The selected voxel x(i*) corresponds
to the voxel time course with minimal partial volume
contamination and thus can be regarded as an AIF
estimate.

MATERIALS AND METHODS

Simulations

Simulations were performed by assuming a heterogene-
ous tissue with various concentration curves. The purity
of each voxel was calculated. The ground-truth AIF was
generated by using the modified population average AIF
[12].

Simulation A

To assess how the time concentration curve changes
under different conditions. Simulation was performed by
assuming a pure arterial voxel without partial volume
effect, therefore Vp ¼ 1, Ve ¼ 0, and Ktrans ¼ 0. Different
extents of partial volume effect were introduced to the
signal of the concentration curves by changing one phar-
macokinetic parameter with the other two maintained.
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The simulation included the following conditions: (1)
decreased Vp to simulate the decreased contribution
from the arterial component, (2) increased Ve to simulate
the increased contribution from the extravascular compo-
nent, and (3) increased Ktrans to simulate the increased
leakage from vascular component.

Simulation B

A Monte–Carlo simulation was performed by creating
100 tissue concentration curves x(i) using Eq. 2 with
Ktrans(i) uniformly distributed between [0,2.2] (min�1),
Ve(i) [0,1] and Vp(i) [0,1], respectively. The following
assessments were performed, which were summarized in
the flowchart (Supporting Information, S1).

Assessment 1, the influence of purity level to the
errors between the BSS- and true-AIF: Thirty tissue con-
centration curves x(i) were randomly selected as the esti-
mated AIFs, of which the purities were varied from
0.104 to 0.296. The root-mean-square-error (RMSE)
between x(i) and the ground-truth AIF cp was measured.

Assessment 2, the influence of signal-to-noise ratio
(SNR) to the errors between the BSS- and true-AIF: Zero-
mean white Gaussian noise was added in the tissue con-
centration curves x(i). The SNR was calculated as in Eq. 6:

SNR ¼
X100

i¼1
xðiÞk k2= 100s2K

� �
; ½6�

where s2 denotes the noise power and K is the total
number of DCE-MRI image time series. For each SNR, a
Monte–Carlo simulation of 1000 runs was created. A
DCE-MRI data set was generated for each independent
run. The IQML method was also performed for compari-
son (details in Appendix B). Three initialization settings
for Ktrans(i), Ve(i), and Vp(i) were used to evaluate the ini-
tialization sensitivity to IQML method: (1) means of their
own distributions, 1.1 min�1, 0.5 and 0.5, respectively;
(2) random values uniformly distributed on [0,3], [0,1],
and [0,1], respectively; (3) the ground-truth values. The
RMSE between the estimated AIF and ground-truth AIF
was then measured.

Assessment 3, the influence of purity of the estimated
AIF to the derived kinetic parameters: The ground-truth
AIF was used to generate various new x(i) by the follow-
ing parameter settings:

1. Ktrans(i) [ {0.05, 0.1, 0.25, 0.5}, Ve(i) ¼ 0.2, and Vp(i)
¼ 0.005;

2. Ktrans(i) ¼ 0.15, Ve(i) [ {0.05, 0.1, 0.3, 0.5}, and Vp(i)
¼ 0.005;

3. Ktrans(i) ¼ 0.15, Ve(i) ¼ 0.2, and Vp(i) [ {0.005, 0.05,
0.25, 0.5}.

Given the tissue concentration curves x(i) and the
thirty estimated cps with various purities, the kinetic pa-
rameters Ktrans(i), Ve(i), and Vp(i), can be derived by solv-
ing the curve fitting problem [3].

DCE-MRI Data Acquisition

Patients

Six patients (mean age, 60.5 6 11.6-year-old) with histo-
logically proven diagnosis of hypopharyngeal or oral

pharyngeal cancer at stages of T3 or T4, were enrolled in
the study. Written informed consent was obtained from
all participants. The study was approved by institutional
review board. DCE-MRI images were acquired by a 3 T
scanner (Trio a TIM system, Siemens, Erlangen, Ger-
many) using a 3D spoiled gradient-echo sequence with
the following parameters: TR/TE ¼ 3.5/1.13 ms, 230 �
230 mm2 field of view, 108 � 128 matrix, 4-mm section
thickness, and 16 transverse sections in the volume. A
spatial saturation slab was implanted inferior to the
acquired region to minimize the inflow effect from the
carotid arteries. Before the contrast agent administration,
baseline longitudinal relaxation time (T10) values were
calculated from image acquired with different flip angles
(4�, 8�, 15�, and 25�). The dynamic series involved use of
the same sequence with a 15� flip angle. After four
acquisitions of the dynamic baseline scan, a standard
dose (0.1-mmol/kg) of gadopentetate dimeglumine (Gd-
DTPA, Magnevist, Bayer-Schering, Burgess Hill, UK) was
administered by a power injector through a cannula
placed in the antecubital vein at a rate of 3 mL/s and im-
mediately followed by a saline flush. A total of 80 vol-
umes were acquired with a temporal resolution of 3.3 s.
The total acquisition time was 4 min and 24 s.

Animal Experiments

To evaluate the in vivo reproducibility of the BSS-AIF,
eight rats (Sprague-Dawley, 300–400 g) with implanted
C6 tumors on the brain (9–15 days after tumor implanta-
tion) were imaged twice within a time interval of 4–8 h
(4.81 6 1.46 h). Images were acquired on a 7 T MR scan-
ner (ClinScan, Bruker, Ettlingen Germany). All the proce-
dures were carried out in accordance with the institu-
tion’s Animal Care and Use Committee approval.
Animals were anesthetized during the imaging experi-
ment at 2–3% isoflurane. The temperature was main-
tained at 37�C with circulating warm water. Heart rate,
respiration rate, and temperature were monitored during
the MRI experiments. A dedicated rat holder with tooth
bar and ear bars was used to fix the position of animals.
To maintain the physiological status of animals, anesthe-
sia was suspended to allow for recovery between the two
scans. The rats were removed from the MRI holder and
repositioned before the second acquisition. DCE-MRI
data were acquired using a spoiled 3D gradient echo
sequence with the following parameters: TR/TE ¼ 2.31/
0.76 ms, field of view ¼ 34 � 49 mm2, slice thickness ¼
0.8 mm, and temporal resolution ¼ 1.9 s. Baseline T1
values were calculated from image acquired with multi-
ple flip angles (2�, 5�, 10�, 15�, and 20�). A series of 120
dynamic scans with a flip angle of 25� were acquired fol-
lowed a bolus of 0.1 mL of Gd-DTPA via a tail-vein cath-
eter delivered using a dedicated syringe pump
(PHD2000, Harvard apparatus, MA) with a constant infu-
sion rate of 6 mL/min.

Data Analysis

All the data were processed in MATLAB 7.0 (The Math-
works, Natick, MA). Signal intensities of the measured
DCE-MRI data were converted into contrast agent
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concentration by solving the nonlinear relationship
between the signal intensity and contrast agent concen-
tration [19].

For each clinical data set, the AIFs were defined by
both BSS-AIF and manual selection. To compare the
effect from different manually selected AIFs on the
derived kinetic parameters, eight tissue time courses
were selected from each patient within the bilateral four
arterial areas: common carotid arteries, internal carotid
arteries, external carotid arteries, and vertebral arteries.
The pharmacokinetic parameters, Ktrans, Ve, and Vp, were
derived pixel by pixel using a nonlinear curve fitting to
Eq. 1. Regions of interest (ROIs) within the tumor and
muscle were manually delineated by an experienced
radiologist based on reference images of T2 and contrast-
enhanced T1-weighted images. The Spearman’s rank cor-
relations were performed on both ROIs to assess the cor-
relations between the kinetic parameters and the corre-
sponding purities of each AIF. The differences of the
derived parameters between manual- and BSS-AIFs were
calculated by Eq. 7. The correlation between the calcu-

lated difference and the purity of the corresponding AIF
was assessed using Pearson’s correlation. A statistical
significance was reached when P < 0.05.

Xdifference ¼ jXmanual � XBSSj=XBSS � 100% ½7�

where X denotes the kinetic parameters Ktrans, Ve, Vp

and purity of AIF.

Reproducibility Statistics

The reproducibility of the derived parameters using BSS-
and manual-AIFs was examined by repeated acquisitions
on the same animal. The procedure followed that as
described by Padhani et al. [20–22]. All statistical tests
were performed in SPSS version 12.0 (SPSS Inc., Chi-
cago, IL), with a threshold at the 5% level of signifi-
cance. ROIs were drawn on the central slice within the
tumor. To make sure the clearance of the contrast media
before the second acquisition, Wilcoxon’s-signed rank
test was used to examine the difference between the T10

FIG. 1. Simulation A for AIFs by

varying kinetic parameters of the
tissue time courses (left panels)
and the corresponding purity of

the AIFs (right panels): (a) Varied
Vp with Ve ¼ 0.3 and Ktrans ¼ 0.1;

(b) Varied Ve with Vp ¼ 0.3 and
Ktrans ¼ 0.1; (c) Varied Ktrans with
Vp ¼ 0.3 and Ve ¼ 0.3.
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values of the tumor before injection. The squared root of
the mean squared difference and the within-subject
standard deviation was calculated between the two
scans. The repeatability was assessed by a threshold
below which the absolute difference between two scans
of the same rat is expected to lie for 95% of pairs of
observations. The within-subject coefficient of variation
was used to quantify the measurement error relative to
the size of the kinetic parameters. The variance ratio was
calculated to compare the between-subject variance and
within-subject variance for each parameter.

RESULTS

Figure 1 plots the AIFs of the simulation A by varying
kinetic parameters of the tissue concentration curves x(i).
The left column shows the curves of AIF from the simu-
lation using different Vp (a), Ve (b), and Ktrans (c). The
right panels plot the purity of the corresponding AIFs
against the parameters of interest, respectively. As the Vp

increased, both the peak of the AIF and the correspond-
ing purity increased. The increase of Ve led to an ele-

vated level of the washout, and therefore the observed
purity decreased. The increase of Ktrans led to a greater
area under the curve of AIF, the corresponding purity
had a rapid drop to a nadir (r ¼ 0.1825, Ktrans ¼ 0.27)
and a subsequent slow increase to a plateau.

Figure 2 plots the results of the assessment 1 and 2
from the simulation B. Figure 2(a) plots the RMSE
against the purity of the simulated AIF. As the purity of
x(i) increased, the RMSE between cp and x(i) decreased.
Figure 2(b) plots the RMSE against SNR, for the BSS-AIF
method and the IQML with fixed, random, and ground-
truth initializations. As the SNR increased, the RMSEs of
both BSS-AIF and IQMLs decreased until it reached a
stable state. IQML with fixed value initialization reduces
to 0.18, and with random initialization 0.1. In contrast
both BSS-AIF and IQML with ground truth initialization
approached 0. In addition, the RMSE of BSS-AIF was
smaller than both that of IQML with fixed initialization
for SNR > 15 dB, and that of IQML with random initiali-
zation for SNR > 27 dB.

Figure 3 plots the estimated Ktrans, Ve, and Vp against
the purities of the AIFs (assessment 3 in simulation B).

FIG. 2. Influence of purity of AIF (simulation B) and SNR to the RMSE: (a) RMSE between the ground-truth AIF and the tissue concen-
tration curves with various purities; (b) RMSE of the AIF estimated by the proposed BSS-AIF and the IQML method (with different initial-
izations) for various SNRs.

FIG. 3. Influence of purity of AIF (simulation B) to the estimated parameters. (a) The estimated Ktrans (in logarithmic scale), (b) Ve (in lin-

ear scale), and (c) Vp (in linear scale) were plotted for various purities of AIFs. The vertical solid lines indicate the ground-truth AIF with
maximum purity equal to 0.296.

BSS AIF in DCE-MRI 5



The ground-truth AIF (solid vertical lines) had the high-
est purity (0.296). As the purity increased, both Ktrans

and Ve increased while the Vp decreased. It was noticed
that the tissues with high- Ktrans were more susceptible

to the purity, as indicated by the increased slope in Fig.
2a. The maximal differences in Ktrans, Ve, and Vp were
82%, 48%, and 24%, respectively, when the purity
decreased from 0.296 to 0.104.

FIG. 4. Demonstration of the shapes of the manual- and BSS-AIFs. a: The BSS-AIF. b–f: The manually selected AIFs. The purities of

manually selected AIFs were reduced, which could be attributed to either a decreased height of the peak (b), an elevated baseline of
the curve (c), a broadening width in the first pass (d,e) or a drift of the returned baseline (f).

FIG. 5. Intrasubject comparison of kinetic parameters by using manual- and BSS-AIFs. a: Delineation of ROI on the tumor. b: A voxel-

wise comparison of the kinetic parameters derived by using BSS-AIF (upper row) and manually selected AIF (lower row). c: Scatter plots
of three derived parameters for voxels within the ROI (BSS-AIF versus manually selected AIF).
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Figure 4 demonstrates the shapes of the manual- and
BSS-AIFs. The shape of the concentration curve selected
by BSS-AIF (a) is the sharpest. The purities of manually
selected AIFs were reduced, which could be attributed
to either a decreased height of the peak (b), an elevated
baseline of the curve (c), a broadening width in the first
pass (d,e), or a drift of the returned baseline (f).

Figure 5 shows the intrasubject comparison of the
derived kinetic parameters by using manual- and BSS-
AIFs in a representative patient. The ROI was delineated
on the tumor for a voxel-wise comparison (Fig. 5a,b).
The kinetic parameters derived from BSS-AIF from each
voxel were plotted against those from the manual selec-
tion (Fig. 5c). It was noticed that both Ktrans and Ve were
higher while Vp of BSS-AIF was lower than those of

manually selected AIF (slopes of the regression lines ¼
1.3, 1.2, and 0.89 for Ktrans, Ve, and Vp, respectively).
Pearson’s correlation showed a significant linear rela-
tionship between these two methods in all three parame-
ters (P < 0.001, r ¼ 0.999, 0.993, and 0.9017 for Ktrans,
Ve, and Vp, respectively).

Figure 6 plots the kinetic parameters against the puri-
ties of AIFs from the six patients. Nine AIFs were
extracted from each patient, including eight manually
selected and one BSS estimated. The BSS-estimated AIF
had the highest purity. The kinetic parameters derived
from the manually selected AIFs showed significant var-
iations up to 38%, 23%, and 41% for Ktrans, Ve, and Vp,
respectively, because of the difference in purities. All
the BSS-AIFs were located in either carotid or vertebral

FIG. 6. Estimated parameters against the corresponding purities of AIFs from six patients. The Ktrans, Ve, and Vp were derived by using
nine AIFs for each patient (eight manually selected AIFs and a BSS-AIF located at the highest purity for each patient). Evaluations were
performed on the (a) tumor and (b) muscle of the patients. c: The percentage differences of the derived parameters were plotted against

the difference of AIF purity. The symbols ‘‘*’’ denote significant correlations with P < 0.05.
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arteries (Supporting Information, S2 and S3). Both Ktrans,
and Ve were positively correlated to the purities of AIFs
in all patients on both tumor and muscle. However, in
Ve significant correlation in muscle was only found in
three subjects. In contrast, Vp had significant negative
correlations in five patients on tumor and three on mus-
cle. Figure 6c plots the percentage differences of the
derived parameters against the differences of purity in
AIF. Significant correlations were found in Ktrans (both
tumor and muscle) and Ve (tumor). No correlations reach
statistical significance in Vp. In all kinetic parameters,
the lines of regression in the tumors had increased
slopes than those of muscles.

Table 1 summarized the reproducibility of the derived
kinetic parameters in the animal experiment using BSS-
and manual-AIFs. No significant difference was found
between T10 of the tumor obtained at the start of each
injection (P ¼ 0.221). Shapiro–Wilk tests showed normal
distribution in each parameter. Therefore, the reproduci-
bility analysis was performed in the original scale [20].
No significant relationship between the absolute differ-
ences and means for each parameter (Kendall’s t test)
was found, which indicated that the measurement error
was independent of the magnitude of the parameter. The
Wilcoxon’s-signed rank test showed no significant differ-
ence between the two scans in each parameter. It can be
found that the within subject coefficient of variation for
Ktrans and Ve were improved using the BSS-AIF (0.075
and 0.137, respectively) than those by using manual AIF
(0.106 and 0.205, respectively). The Bland–Altman plots
of the repeatability analysis were shown in Figure 7. The
repeatability levels of Ktrans and Ve were lower by using
the BSS-AIF (0.0122 and 0.0186, respectively) when
compared with those by the manual AIF (0.0151 and
0.0237, respectively).

DISCUSSION

In this study, we proposed an unsupervised BSS algo-
rithm that could estimate the AIF from the voxel time
course with the maximum purity. The identified AIF
contained the least contamination from other tissues.
Because the true AIF cannot be obtained in clinical prac-
tice, the proposed method provides the closest alterna-
tive choice. As the purity of the estimated AIF increased,
the errors between the estimated AIF and the true one
would reduce. The high purity in AIF can result in an
improvement in the estimation of the derived pharmaco-
kinetic parameters. In contrast, the conventional man-
ually selected AIF had a reduced purity, which could
lead to a significant variation in the derived index of
interest.

Previous work indicated that the shape of AIF can be
distorted in terms of peak amplitude, bolus width, and
area under the curve by the partial volume effect [23].
The purity is a measure of the correlation between a
function of interest to the impulse function, which is an
ideal AIF. An AIF with a high purity is characterized by
a rapid wash-in, rapid wash-out, a high amplitude of the
peak, and a narrow width of the bolus. The simulation A
suggests that the maximum purity provides a robust esti-
mate of the AIF in all conditions when the partial vol- Ta
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ume effect is the minimum, i.e., when at either the high-
est Vp, lowest Ve or lowest Ktrans. In contrast, both the
peak height and the area under curve are not necessarily
the best estimate of the AIF. In our clinical data, the
shape of the AIF estimated by the BSS algorithm was the
sharpest with the minimum distortion when compared
with those by manually selected method.

The RMSE between the AIF from the proposed algo-
rithm and the ground-truth reduced rapidly as the SNR
increased (Fig. 2b). The measured SNR from in vivo data
in the current study suggests that the performance of the
BSS-AIF could be comparable with the IQML algorithm.
Because the ground truth AIF is not always available,
AIF identified by IQML can lead to significant variations
in the derived pharmacokinetic parameters. Compared
with the IQML algorithm, the BSS algorithm could pro-
vide a consistent estimation of the AIF independent of
the given initial condition.

The derived Ktrans and Ve were underestimated while
Vp was overestimated in simulation, when the purity of
the AIF was reduced. This observation was consistent
with the image findings from the patients. In the same
subject using the manual selection, reduction of both
Ktrans and Ve and increase of Vp were associated with a
reduced purity. The Spearman’s correlation indicated
the same findings when compared among the subjects.
The normalized differences in Fig. 6c indicated a posi-
tive dependence of the derived parameters on purity.
The decreased purity could be related to a reduced arte-
rial contribution. The estimated transfer constant may be
underestimated due to the reduced arterial supply. The
underestimation of extravascular volume, Ve, could be
attributed to a limited contrast agent accumulation of a
reduced transfer constant. This observation was consist-

ent with the overestimation in the plasma volume frac-
tion, Vp.

The derived parameters of the tumor were more sus-
ceptible to the changes in purity than those of muscle
(Fig. 6c), which could be related to the perfusion limited
Kety model in tumor environment [17,18]. Both high-vas-
cular permeability and insufficient blood flow in tumor
lead to the dominance of the blood supply on the estima-
tion of Ktrans. In contrast, tissue microenvironment in
muscle is permeability limited. Therefore, the Ktrans is
dominated by the permeability and surface area of the
capillary wall, which are not affected by the fluctuations
in blood supply. In addition, the vascular volume in nor-
mal muscle occupies only a small fraction of the total
tissue volume. The effect of the fluctuations in the blood
contribution cp on the total tracer concentration x(i) is
relatively restricted. Hence, the derived kinetic parame-
ters in muscle are less affected by the changes in the pu-
rity of AIF. The findings have several implications in
clinical studies, for example, in monitoring treatment
response to cancer therapies. The manually selected AIF
could lead to an underestimation in Ktrans and Ve within
the tumor environment, which in turn can result in a
misinterpretation to the treatment efficacy because of the
reduced observable changes.

The animal experiment showed good reproducibility
in the derived kinetic parameters of the tumor by the
BSS-AIF method. The reduced within subject coefficient
of variation suggests that the BSS algorithm is robust
when compared with the manual method. The lower
repeatability level implies that a smaller change of Ktrans

and Ve in an individual could be considered to be statis-
tically significant by using the BSS-AIF when compared
with those by using the manual AIF. The interscan time

FIG. 7. Bland–Altman plots of the derived kinetic parameters of the tumor from eight rats. The kinetic parameters Ktrans, Ve, and Vp

were derived by using BSS-AIF (a–c) and the manually selected AIF (d–f). The mean differences for each parameter are shown as the

solid line, and the 95% limits of agreement are shown as the dotted lines.
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window in the reproducibility study was compromised
between sufficient clearance of the contrast media and
reduced physiological changes due to rapid tumor
growth on the animal. Prolonged anesthesia could lead
to unstable physiological state [24]. In the current study,
the MR acquisitions were separated by durations longer
than eight half lives of the contrast agent. During this pe-
riod anesthesia was suspended to allow for animal recov-
ery. Therefore, the voxel-by-voxel comparison was not
available. However, the voxel-wise repeatability is not
practical due to unavoidable motion from the animal,
which results in interscan misregistration.

There are a few limitations in the present study. First,
only the extended Kety model was adopted for the tracer
kinetic modeling analysis. In the future, the effect of dif-
ferent kinetic models will be investigated. Second, the
current study selected the pixel with the highest purity.
A potential risk is that the choice could suffer from the
poor SNR. The use of an average from multiple voxels
could alleviate the issue but will unfortunately reduce the
purity due to partial volume effect. In the future, it will
be assessed whether an average of multiple voxels with
high purities will improve the estimation efficiency when
in data with low SNR. Third, if there are no arterial vox-
els in the data set that are free from partial volume effects,
then the BSS AIF will produce biased estimates of the
tracer kinetic parameters. The lack of information related
to the AIF in the data set could lead to failure in most
AIF identification techniques. Technically, in a clinical
dataset, an arterial voxel is usually included within the
three-dimensional volume. The BSS algorithm can auto-
matically search this volume and find the AIF with a rela-
tively higher purity, which may be difficult to identify
visually when using the manual method.

In conclusion, an automatic AIF estimation method
was proposed. The voxel with the maximum purity
can be identified in the mixed tissue. The extracted AIF
is closest to the ground-truth one. The derived phar-
macokinetic parameters are consistently reproducible.
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APPENDIX A

Consider the signal model given by Eq. 2

xðiÞ ¼ BðiÞcp cp
� � K transðiÞ

VpðiÞ
� �

; ½A1�

where

BðiÞ ¼ Dt

�

1 0 . . . 0

exp �kepðiÞðt2 � t1Þ
� �

1 0

..

. ..
. . .

. ..
.

exp �kepðiÞðtK � t1Þ
� �

exp �kepðiÞðtK � t2Þ
� � � � � 1

2
666664

3
777775:

Since the elements in x(i) are non-negative, the purity
measure can also be written as

ri ¼
xðiÞ

1TxðiÞ

����
����
2

¼ s1ðiÞ BðiÞcp
1TBðiÞcp

 !
þ s2ðiÞcp

�����
�����
2

; ½A2�

where s1ðiÞ ¼ K transðiÞ1TBðiÞcp=1TxðiÞ, s2ðiÞ ¼ VpðiÞ1Tcp=,
1TxðiÞ, cp ¼ cp=1

Tcp, and 1 is an all-one vector. It is also

easy to verify that s1ðiÞ þ s2ðiÞ ¼ 1 and s1ðiÞ � 0,
s2ðiÞ � 0. In addition, since the purity measure is also a

sparsity measure [25], cp convolved with the smooth fi-

nite impulse response such as B(i) for kep(i) � 0 will

decrease the sparsity of cp, i.e.,

BðiÞcp
1TBðiÞcp

����
����
2

� cp

1Tcp

����
����
2

¼ cp
�� ��

2
: ½A3�

Therefore, by Eqs. A2 and A3, and Jensen’s inequality,
we have

ri � s1 ið Þ BðiÞcp
1TBðiÞcp

����
����
2

þs2 ið Þ cp

1Tcp

����
����
2

� max
BðiÞcp

1TBðiÞcp

����
����
2

;
cp

1Tcp

����
����
2

( )
� cp
�� ��

2
;

where the equality holds if and only if i is such that
s2ðiÞ ¼ 1 and s1ðiÞ ¼ 0. Hence, assuming the presence of

artery in the DCE-MR images (i.e., there exists a pure ar-

terial voxel index ‘ such that Vp(‘) ¼ 1 and Ktrans(‘) ¼ 0,
which leads to x(‘) ¼ cp), then selecting the voxel with
the maximum purity measure

i� ¼ argi max ri

would identify the voxel which is fully contributed from
AIF, i.e., i* ¼ ‘.

APPENDIX B

The IQML method is summarized as follows. By Eq. A1,
Eq. 2 can also be expressed as

xðiÞ ¼ ðK transðiÞBðiÞ þ VpðiÞIÞcp; i ¼ 1; . . . ;L

where I is a K�K identity matrix, and L is the number
of voxels in DCE-MRI data cube. Stacking matrices on
top of each other, we get a linear system of equations

y ¼

xð1Þ

..

.

xðLÞ

2
6664

3
7775 ¼

K transð1ÞBð1Þ þ Vpð1ÞI

..

.

K transðLÞBðLÞ þ VpðLÞI

2
66664

3
77775cp

¼ HðfK transðiÞ; kepðiÞ;VpðiÞgLi¼1Þcp:

where

HðfK transðiÞ; kepðiÞ;VpðiÞgLi¼1Þ ¼
K transð1ÞBð1Þ þ Vpð1ÞI

..

.

K transðLÞBðLÞ þ VpðLÞI

2
64

3
75
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is a function of kinetic parameters fK transðiÞ;kepðiÞgLi¼1

and plasma volume. fVpðiÞgLi¼1 IQML is to find
fK transðiÞ;kepðiÞ;VpðiÞgLi¼1 and cp together by handling the
least squares problem:

min
fK transðiÞ;kepðiÞ;VpðiÞgLi¼1;cp

y�H fK transðiÞ; kepðiÞ;VpðiÞgLi¼1

� 	
cp

��� ���
2

which is equivalent to

min
fK transðiÞ;kepðiÞ;VpðiÞgLi¼1

P?
H fK transðiÞ;kepðiÞ;VpðiÞgLi¼1ð Þy

����
����
2

;

where P?
H ¼ I�HðHTHÞ�1HT is the orthogonal comple-

ment projector of H. The above nonconvex problem can
be handled by any nonlinear program solver, but the so-
lution found could be subject to a local optimality issue
depending on the initial point provided. Once a solution
fK trans0ðiÞ;kep0ðiÞ;Vp

0ðiÞgLi¼1 is obtained, the estimated AIF
is given by

ĉp ¼ H fK trans0ðiÞ;kep 0ðiÞ;Vp
0ðiÞgLi¼1

� 	y
y;

where H† ¼ (HTH)�1HT.
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